Orienteering

Presented by
Chris Houlberg
Scoutmaster Troop 119

What is Orienteering

- Orienteering is a Sport
- Walk in the Woods
- Competitive event
- Participants use an Accurate Detailed Map and Description to find Points in a Landscape
- Orienteering is a Merit Badge
- Requirements Revised January 1, 2004
- Know Basic First Aid
- Know how to use Map and Compass
- Participate in and Teach Orienteering

Orienteering Course

- Consists of a Start, Series of Control Sites and a Finish
- Control Sites
- On a Map they are Marked by Circles, Connected by Lines and Numbered in the Order in which they are to be Visited
- On the Ground they are Marked by Flags
- Control Site Visits are Verified
- Punch hanging next to the Control Flag
- Participants must Punch their Control Card
- Route between Controls is not Specified
- Several Course Levels are usually Available at a Meet

Orienteering Map \& Description

- Most Orienteering Maps (based on topographic)
- 5 Color
- 5 Meter Contour Lines
- Scale of 1:15,000 ($1 \mathrm{~cm}=>150 \mathrm{~m}$)
- A Series of North Lines (magnetic) for Reference
- Course Levels Range from Beginner (White) to Expert (Blue)
- WHITE 3.5 km 75 m climb Start: Corner of the field
1 BL trail junction
2 JC stream junction
3 PG SW corner of the evergreens
4 MP SW end of the knoll
5 BL upper part of the reentrant
Finish: NE corner of the building (350 m)

Topographic Map Symbols

COASTAL FEATURES	
Foreshore flat	积傦
Coral or rock reef	Reef
Rock，bare or awash；dangerous to navigation	＊＊
Group of rocks，bare or awash	${ }^{*} * * * * *$
Exposed wreck	1．x
Depth curve；sounding	L_{18}
Breakwater，pier，jetty，or wharf	$[\Omega$
Seawall	
Oil or gas well；platform	－．
BOUNDARIES	
National	ーーーーワー
State or territorial	－＿－－－
County or equivalent	－
Civil township or equivalent	－
Incorporated city or equivalent	－－－－－
Federally administered park， reservation，or monument（external）	－．－－．
Federally administered park， reservation，or monument（internal）	
State forest，park，reservation，or monument and large county park	
Forest Service administrative area＊	－－．．－${ }^{\text {－}}$－
Forest Service ranger district＊	－－
National Forest System land status， Forest Service lands＊	
National Forest System land status， non－Forest Service lands＊	
Small park（county or city）	－－－－－－－－－－－－－－－－－－

CONTOURS	
Topographic	
Index	6000
Approximate or indefinite	－
Intermediate	
Approximate or indefinite	＇
Supplementary	
Depression	?
Cut	(a)
Fill	$\frac{\sqrt{A}}{7 / \sqrt{x} \mid}$
Continental divide	—————
Bathymetric	
Index＊＊＊	－
Intermediate＊＊＊	－
Index primary＊＊＊	\cdots
Primary＊＊＊	\cdots
Supplementary＊＊＊	
CONTROL DATA AND MONUMENTS	
Principal point＊＊	¢ 3－20
U．S．mineral or location monument	－USMM 438
River mileage marker	$\begin{gathered} \text { Mile } \\ +69 \\ \hline \end{gathered}$
Boundary monument	
Third－order or better elevation， with tablet	BM $\square_{9134} \mathrm{BM}$ 中 277
Third－order or better elevation， recoverable mark，no tablet	$\square^{\square} 5628$
With number and elevation	${ }^{67} \square_{4567}$
Horizontal control	
Third－order or better，permanent mark	\triangle Neace 4 Neace
With third－order or better elevation	$\begin{aligned} & \text { BM }_{\triangle_{52}} \nleftarrow \begin{array}{l} \text { Pike } \\ \text { BM393 } \end{array} \end{aligned}$
With checked spot elevation	$\triangle 1012$
Coincident with found section corner	
Unmonumented＊＊	＋

Topographic Map Symbols (Cont.)

Universal transverse metcator grid

UTM grid (full grid)	$\frac{1}{273}$
UTM grid ticks*	$\frac{1}{269}$

RAILROADS AND RELATED FEATURES
Standard guage railroad, single track
Standard guage railroad, multiple track
Rarrow guage railroad, single track
Railroad siding
Railroailroad bridge; drawbridge
Railroad in road
Railroad in light duty road*
Railroad multiple track
MARINE SHORELINES
Shoreline
Apparent (edge of vegetation)***
Indefinite or unsurveyed

Topographic Map Symbols (Cont.)

RIVERS, LAKES, AND CANALS - continued
Perennial lake/pond
Intermittent lake/pond
Dry lake/pond
Narrow wash
Cande wash flume, or aqueduct with lock
Aqueduct tunnel
Spring or seep
SUBMERGED AREAS AND BOGS
Marsh or swamp
Submerged marsh or swamp
Wooded marsh or swamp
Submerged wooded marsh or swamp

ROADS AND RELATED FEATURES

Please note: Roads on Provisional-edition maps are not classified as primary, secondary, or light duty. These roads are all classified as improved roads and are symbolized the same as light duty roads.

Primary highway		
Secondary highway	$\underline{=}$	
Light duty road		
Light duty road, paved*		
Light duty road, gravel*		
Light duty road, dirt*		
Light duty road, unspecified*		
Unimproved road	=======	
Unimproved road*	=======	
4WD road		
4WD road*	====	
Trail	-------	
Highway or road with median strip		
Highway or road under construction	Under	
	Const	
Highway or road underpass; overpass	I	
	\\|	
Highway or road bridge; drawbridge		
Highway or road tunnel	===	
Road block, berm, or barrier*	1	
Gate on road*	1	
Trailhead*	$\stackrel{\text { T }}{\text { H }}$	

SURFACE FEATURES	
Levee	
Sand or mud	
Disturbed surface	
Gravel beach or glacial moraine	
Tailings pond	
TRANSMISSION LINES AND PIPELINES	
Power transmission line;	
pole; tower	
Telephone line	
Aboveground pipeline	
Underground pipeline	
VEGETATION	
Woodland	
Shrubland	
Orchard	
Vineyard	
Mangrove	

International Orienteering Federation Control Description Sheet Example

IOF Event Example			
M45, M50, W21			
5	7.6 km		210 m
D	$\boldsymbol{\prime}$	Y	
1101	\because		$<$
2 212	-	1.0	\bigcirc.
3 135	欢		$\stackrel{\square}{\square}$
$4{ }^{4} 246\|1\|$	\bigcirc		\bigcirc
5 164 \rightarrow	[]		\bigcirc
$\bigcirc---120--->$			
6 185	\cdots		-1.
7 178	1\%		\bigcirc
8 147 二	m	2.0	
9 149	,', '		
$\bigcirc----250--->$ (

Control Descriptions for IOF Event Example		
Classes M45, M50, W21		
Course number 5. \quad Length 7.6 km.$$		Height climb 210 m.
Start	Road, wall junction	
1	101	Narrow marsh bend
2	212	North western boulder, 1m high, east side
3	135	Between thickets
4	246	Middle depression, east part
5	164	Eastern ruin, west side
Follow taped route 120m away from control		
6	185	Stone wall, ruined, south east corner (outside)
7	178	Spur, north west foot
8	147	Upper cliff, 2m high
9	149	Path crossing
Follow taped route 250 m from last control to finish		

Control Description Sheet Explanation

- Column 1: Control Number Listed in Sequence
- Column 2: Control Code
- Number Greater than 30
- Used to Reference a Control Site
- Column 3: Which Feature among Similar Features
- Column 4: Control Feature
- Column 5: Appearance (further explanation of feature)
- Column 6: Dimensions/Combinations
- Column 7: Location of the Control Flag
- Column 8: Other Important Information

Orienteering Control Symbols

- Land Forms
Terrace
- Rock and Boulders

$\Pi 17$	Cliff, rock face
1	Rock pillar
$\frac{\Gamma}{k}$	Cave
,	Boulder
\mathbf{A}	Boulder field
4	Boulder
掠	Stony ground
少	Bare rock
][Narrow passage

Orienteering Control Symbols

- Water and Marsh

(2)	Lake
ñ	Pond
nn	Water hole
ε_{2}	River, stream, watercourse
会	Minor water channel, ditch
\because	Narrow march
三	Marsh
E	Firm ground in marsh
\bigcirc	Well
c_{3}	Spring
nn	Water tank, water trough

- Vegetation

Open land
Semi-open land
Forest corner
Clearing
Thicket
Linear thicket
Vegetation boundary
Copse
Distinctive tree
Tree stump, root stock

Orienteering Control Symbols

- Man Made

- Special Features

Special item - an explanation will be supplied to competitors in the pre-race information

Control Card

Sample Topographic Map

40 ${ }^{2}$

Sample Topographic Map. Enlarged

Orienteering for Advancement Second and First Class Ranks

- Buddy System
- Basic First Aid
- Cuts, Scratches and Blisters
- Snake, Insect and Tick Bites
- Poisonous Plants and Animals
- Dehydration, Sun Burn, Hypo and Hyperthermia
- How to use a Map
- How to use a Compass

Orienteering for Advancement Second Class Rank

- Demonstrate how to use a Map and Compass
- Orient a Map
- Explain what the Map Symbols Mean
- Take a 5-mile Map and Compass Hike
- Use existing Map and Compass to Determine your Location at several Points along your Route or
- Make your own Map showing your Route
- Show Significant Features
- Show Compass Rose
- Identify the Map Symbols you used

Orienteering for Advancement First Class Rank

- Using a Compass Complete an Orienteering Course of at least 1-mile
- Measure the Height of a Tree and/or Tower
- Measure the Width of a Ditch and/or River
- How to Find you Way Without a Compass
- In the Day using the Sun
- Watch Method
- Stick and Shadow or Equal Length Shadow Methods
- Sun Compass
- At Night using the Constellations or the Moon

Orienteering Merit Badge

- Show that you know first aid for the types of injuries that could occur while orienteering, including cuts, scratches, blisters, snakebite, insect stings, tick bites, heat and cold reactions (sunburn, heatstroke, heat exhaustion, hypothermia), and dehydration. Explain to your counselor why you should be able to identify poisonous plants and poisonous animals that are found in your area.
- Explain what orienteering is.
- Do the following:
- Explain how a compass works. Describe the features of an orienteering compass.
- In the field, show how to take a compass bearing and follow it.
- Do the following:
- Explain how a topographic map shows terrain features. Point out and name five terrain features on a map and in the field.
- Point out and name 10 symbols on a topographic map.
- Explain the meaning of declination. Tell why you must consider declination when using map and compass together.
- Show a topographic map with magnetic north-south lines.
- Show how to measure distances using an orienteering compass.
- Show how to orient a map using a compass.
- Set up a 100-meter pace course. Determine your walking and running pace for 100 meters. Tell why it is important to pace-count.
- Do the following:
- Identify 20 international control description symbols. Tell the meaning of each symbol.
- Show a control description sheet and explain the information provided.
- Explain the following terms and tell when you would use them: attack point, collecting feature, aiming off, contouring, reading ahead, handrail, relocation, rough versus fine orienteering.
- Do the following:
- Take part in three orienteering events. One of these must be a cross-country course.
- After each event, write a report with
- a copy of the master map and control description sheet,
- a copy of the route you took on the course,
- a discussion of how you could improve your time between control points, and
- a list of your major weaknesses on this course . Describe what you could do to improve.
- Do ONE of the following:
- \quad Set up a cross-country course of at least 2,000 meters long with at least five control markers. Prepare the master map and control description sheet.
- Set up a score-orienteering course with 12 control points and a time limit of at least 60 minutes. Prepare the master map and control description sheet.
- Act as an official during an orienteering even. This may be during the running of the course you set up for requirement 8 .
- Teach orienteering techniques to your patrol, troop or crew.

How to Use a Map

- Use a Current Map (things change)
- Look for the Key
- Identify Map Symbols (landmarks)
- Check the Scale
- Identify North
- Find Compass Rose (north arrow)
- Locate Latitude and Longitude Lines
- Identify Declination
- Difference between True North and Magnetic North
- Needed to Properly Orient the Map
- When labeled usually found along the Bottom of the Map
- Some Maps use other Coordinate Systems

Declination Changes with Time

Model by A. Jockson, A. R. T. Jonkers. W. R. Wolker,
Phil. Trons. R. Soc. London A (2000). 35B, 957-990.

What are Latitude and Longitude

- Astronomic Latitude $\left(\lambda_{\mathrm{a}}\right)$: The angle a normal to the geoid makes to the celestial equatorial plane.
- Astronomic Longitude $\left(\phi_{a}\right)$: The angle the projection of a normal to the geoid on the equatorial plane makes to the Greenwich meridian.
- Other Definitions:
- Terrestrial: Relative to Center of Earth Geoid
- Geocentric: Relative to Center of Standard Ellipsoid
- Geodetic: Relative to Normal of Standard Ellipsoid

Latitude and Longitude

Problem with Latitude and Longitude

The shape of the Earth is a geoid.
This shape is approximated as a Spheroid whose center is not located at the center of the geoid.

Mercator Projections

Mercator Projection

Transverse Mercator Projection

Universal Transverse Mercator (UTM)

Universal Transverse Mercator Description

- An artificial grid system dividing the globe longitudinally into strips 6 degrees wide and divided latitudinally mostly 8 degrees tall.
- The grids are numbered in an easterly direction from 1 to 60 starting at -180 degrees longitude.
- The grids are lettered (not always used) in a northerly direction from A to Z starting at the South Pole (I and O are omitted).
- South of 80 degrees south it is divided into two zones A and B
- From 80 degrees south to 72 degrees north into 19 zones C through W
- From 72 degrees north to 84 degrees north zone X
- North of 84 degrees north it is divided into two zones Y and Z
- Each zone is further divided decimally
- From the Central Meridian with a 500 kilometer (km) false easting to ensure a positive number.
- When lettered latitudinal zones are not used the zone is numbered from the Equator (0 km) or to the Equator ($10,000 \mathrm{~km}$) in a northerly direction.
- The Polar Stereographic projection is usually used in the polar regions.

Reading a Map in UTM

Easting is always a 6 digit coordinate Northing is always a 7 digit coordinate

How to Use a Compass to Take a Bearing

- Point Compass in Direction of Travel
- Hold Away from Belt Buckle or other Metal
- Adjust Orienting Arrow to Match
 Compass Needle
- Account for Declination
- Read Bearing from Compass Housing where
 Direction of Travel Arrow meets Compass Housing

How to Use a Compass to Orient a Map

- Place Map on Flat Surface
- Avoid Surfaces with Metal (school lunch tables)
- Use the Ground
- Avoid Places with Artificial Magnetic Fields
- High Voltage Power Systems
- Railroad Tracks
- Place Compass on Map so Direction of Travel Arrow Lines Up with Compass Rose North or Longitude Line
- Adjust Compass Housing so Orienting Arrow Lines up with Direction of Travel Arrow
- Adjust Compass Housing to Account for Magnetic Declination
- Rotate Map until Orienting Arrow Matches Compass Needle

How to Use a Compass

to Take a Bearing from a Map

- Place Compass on an Oriented Map so Direction of Travel Arrow Lines Up with Line Connecting Start and End Points
- Adjust Compass Housing so Orienting Lines Line Up with Meridian Lines
- Read Bearing from Compass Housing where Direction of Travel Arrow meets Compass Housing

Traveling to a Location on a Map

- There will Always be some Error in Map Readings
- Rule of Thumb: Uncertainty is $1 / 10$ of Distance Traveled
- Intentionally Travel to the Left or Right of the Final Destination
- Sight on then Travel toward

Object in Far Distance (do not watch compass)

- When the Calculated Distance is Traveled the Destination will be to the Right or Left Respectively

Camporee Treasure Hunt

San Miguel	
Distance	Bearing
200	245
150	10
100	150
50	170
125	90
Santa	Cruz
Distance	Bearing
200	260
100	10
150	140
50	345
125	85
Anacapa	
Distance	Bearing
200	280
150	30
100	170
50	50
125	130

Distances are in feet and Bearings are True (non-magnetic) Account for 14 degree Magnetic Declination

Measuring the Height of a Tree

- Method 1 (Stick Method)
- Find Scout of Convenient Height
- Put Stick in Hand at Arms Length
- Adjust Stick to Appear Size of Scout
- With Stick Project and Count Number of Scouts Up the Tree
- Multiply Number by Scout Height
- Method 2
- Similar Triangles
$-\mathrm{X}=\mathrm{H}^{*}(\mathrm{~A}+\mathrm{B}) / \mathrm{A}$

- Method 3 (Felling Method)
- Cover Tree with Stick at Arms Length
- Project Tree to Ground and Pace Distance

Measuring the Width of River

- Method 1 (Compass Method)
- Take Bearing to Object Directly Across River
- Pace off Distance at a Right Angle Until Bearing to Object is 45 degrees Less

- Width equals Distance
- Method 2 (Salute Method)
- With Hand at Arms Length Point to Object Directly Across River
- Turn 90 degrees and Observe Location Pointed to

- Pace Distance to Location for Width of River

Measuring the Width of River

- Method 3 (Stick Method)
- Put Stick in Ground Opposite an Object Across River
- Pace Distance A at a Right Angle to Line of Sight to Object
- Put Second Stick in the Ground
- Continue in Same Direction and Pace Distance A
- Put Third Stick in the Ground
- Pace Away from River until Second Stick is in the Line of Sight with the Object Across the River
- Distance Paced Away from River is the Width of the River

Find Way Without a Compass

 Watch Method- Point Hour hand in the Direction of the Sun
- South is roughly in the Direction of a Line Bisecting the Angle formed by the Hour Hand and 12 o'clock

Find Way Without a Compass Stick and Shadow Method

- Put Short Stick in Ground Aligned so there is
No Shadow (points to Sun)
- Wait about an Hour and Draw a Line in the Dirt in the Direction of the Shadow
- A Line Constructed at a Right
 Angle to the First Line is a North-South Line

Find Way Without a Compass Equal Length Shadow Method

- Put a Long Stick in the ground Vertically and Mark the End of its Shadow with a Small Stick
- Draw a Circular Arc with the Long Stick at its Center and the Small Stick on the Arc

- Wait until the Shadow again Intersects the Arc
- The Line Connecting the two Intersections of the Shadow with the Circular Arc is an East-West Line
- A Line Constructed Perpendicular to this Ease-West Line is a North-South Line

Sun Compass

Find Way Without a Compass Using Constellations and Stars

- The Big Dipper Points to the North Star (almost)
- Any Northern Constellation or Star at it's Highest Altitude is in the Direction of North
- Cassiopeia (the "W")
- Ursa Major (the Big Dipper)
- Any Southern Constellation or Star at it's Highest Altitude is in the Direction of South
- Orion (the Hunter)
- Leo (the Lion)
- Sagittarius (the Teapot)

Finding Way Without a Compass Using the Moon

- Imagine a Line Touching the Tips of the Moon's Cresent
- Extend this Line Until it Contacts the Horizon
- The Intersection is roughly South of an Observer in the Northern Hemisphere

Information Sources

- http://www.orienteering.org
- http://www.learn-orienteering.org/
- Boy Scout Handbook
- Orienteering Merit Badge Booklet
- http://geomag.usgs.gov
- SkyGlobe

